Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Technical Paper

A Simple Fan Model for Underhood Thermal Management Analyses

2002-03-04
2002-01-1025
This work presents a simple fan model that is based on the actuator disk approximation, and the blade element and vortex theory of a propeller. A set of equations are derived that require as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades. These equations are solved iteratively to obtain the body forces generated by the fan in the axial and circumferential directions. These forces are used as momentum sources in a CFD code to simulate the effect of the fan in an underhood thermal management simulation. To validate this fan model, a fan experiment was simulated. The model was incorporated into the CFD code STAR-CD and predictions were generated for axial and circumferential air velocities at different radial positions and at different planes downstream of the fan. The agreement between experimental measurements and predictions is good.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

A Study on the Hole-to-Hole Spray Variation Based on Nozzle Internal Structure

2013-04-08
2013-01-1611
Spray behavior is regarded as one of main factors which influence engine performance, fuel consumption and emissions for diesel engine. In practice, spray characteristics from each orifice from a multi-hole nozzle are normally arranged symmetrically, while the hole-to-hole spray variation is unavoidable. This variation will cause spatial uneven distribution of spray and combustion degrade, which will be no longer inconsiderable in face of the more and more stringent emission rules. In this paper, two methods including spray macro-characteristics experiment and separated fuel mass measurement are employed to test the hole-to-hole spray variation of two six-hole symmetric VCO injectors of different brands, and experiments are operated under different conditions including different injection pressures, back pressures and injection durations.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Journal Article

Acoustical Modeling and Test Correlation of an Intake Manifold and Charge Air Cooler Assembly for a 4-Cylinder Turbocharged Engine

2023-05-08
2023-01-1076
The charge air cooler (CAC), which is placed between the compressor and the engine intake manifold (IM), is an important component in a turbocharged engine. It is essential to capture the temperature change, the pressure drop or the acoustical wave behavior of the charge air cooler in the one-dimensional(1D) simulation model for the predictive accuracy of engine performance and intake noise. In this paper, the emphasis is on the acoustic modeling of an intake manifold and charge air cooler assembly for the low frequency engine intake order noise. In this assembly, the core of the charge air cooler is embedded in the plenum of the intake manifold. The modeling and correlation process is comprised of three steps. First, the charge air cooler core is removed from the intake manifold and put into a rectangular box matching its envelope with a single air inlet and outlet, thereby simplifying the complex shape of the manifold with the different runner components.
Technical Paper

Adapting Design for Six Sigma (DFSS) Methodology for Diesel Lean NOx Trap (LNT) Catalyst Screening

2016-04-05
2016-01-0953
In order to meet LEV III, EURO 6C and Beijing 6 emission levels, Original Equipment Manufacturers (OEMs) can potentially implement unique aftertreatment systems solutions which meet the varying legislated requirements. The availability of various washcoat substrates and PGM loading and ratio options, make selection of an optimum catalyst system challenging, time consuming and costly. Design for Six Sigma (DFSS) methodologies have been used in industry since the 1990s. One of the earliest applications was at Motorola where the methodology was applied to the design and production of a paging device which Consumer Reports called “virtually defect-proof”.[1] Since then, the methodology has evolved to not only encapsulate complicated “Variation Optimization” but also “Design Optimization” where multiple factors are in play. In this study, attempts are made to adapt the DFSS concept and methodology to identify and optimize a catalyst for diesel applications.
Technical Paper

Adaptive Sampling in the Design Space Exploration of the Automotive Front End Cooling Flow

2020-04-14
2020-01-0149
One of the key inputs 1-D transient simulation takes is a detailed front end cooling flow map. These maps that are generated using a full vehicle Three-dimensional Computational Fluid Dynamics (3D CFD) model require expensive computational resources and time. This paper describes how an adaptive sampling of the design space allowed the reduction of computational efforts while keeping desired accuracy of the analysis. The idea of the method was to find a pattern of Design of Experiments (DOE) sampling points for 3D CFD simulations that would allow a creation of an approximation model accurate enough to predict output parameter values in the entire design space of interest. Three procedures were implemented to get the optimal sampling pattern.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

Air Induction Impact on Turbocharger Noise and Thermodynamic Performance

2020-04-14
2020-01-0426
The trend to simultaneously improve fuel economy and engine performance has led to industry growth of turbocharged engines and as a result, the need to address their undesirable airborne noise attributes. This presents some unique engineering challenges as higher customer expectations for Noise Vibration Harshness (NVH), and other vehicle-level attributes increase over time. Turbocharged engines possess higher frequency noise content compared to naturally aspirated engines. Therefore, as an outcome, whoosh noise in the Air Induction System (AIS) during tip in conditions is an undesirable attribute that requires high frequency attenuation enablers. The traditional method for attenuation of this type of noise has been to use resonators which adds cost, weight and requires packaging space that is often at a premium in the under-hood environment.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

2015-04-14
2015-01-0965
In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
X